

Visualizing Electrons in ATLAS

Electrons In ATLAS

BASICS

- Electrons are massive and charged → they interact with the tracker and calorimeter
- Create tracks and energy clusters → easy to reconstruct
- Interactions are well understood → can estimate energy well

Electrons In ATLAS

USE IN ATLAS

- Efficient triggers and ID → analyses with electrons benefit from improved background rejection
- O Accurate reconstruction → final states with electrons have reduced systematics
- Extending the range of electron algorithms → more physics searches are possible
- o But room for improvement!

BASICS

- Electrons are massive and charged → they interact with the tracker and calorimeter
- Create tracks and energy clusters → easy to reconstruct
- Interactions are well understood → can estimate energy well

Thais and the second of the

Electron Software

Reconstruction

- Create clusters from energy deposits in EM Calo
- Create tracks from hits in the inner detector
- Form electron candidates by matching tracks to clusters
 - Based on energy, location, and hit types

Thais Control of the Control of the

Electron Software

Reconstruction

Identification

- Create clusters from energy deposits in EM Calo
- Create tracks from hits in the inner detector
- Form electron candidates by matching tracks to clusters
 - Based on energy, location, and hit types

- Calculate physics motivated variables
- Calculate Likelihood
 - Formed from PDFs of electron variables
- Evaluate LH score compared to recommendations

Thais and the state of the stat

Electron Software

Reconstruction

Identification

Energy Regression

- Create clusters from energy deposits in EM Calo
- Create tracks from hits in the inner detector
- Form electron candidates by matching tracks to clusters
 - Based on energy, location, and hit types
- 0.09 ATLAS Simulation Signal Background
 0.08 \(\sigma = 13 \text{ TeV Internal} \)
 0.08 \(\sigma = 13 \text{ TeV Internal} \)
 0.07 \(\sigma = 13 \text{ TeV Internal} \)
 0.06 \(\sigma = 13 \text{ TeV Internal} \)
 0.07 \(\sigma = 13 \text{ TeV Internal} \)
 0.08 \(\sigma = 13 \text{ TeV Internal} \)
 0.09 \(\sigma = 13 \text{ TeV Internal} \)
 0.09 \(\sigma = 13 \text{ TeV Internal} \)
 0.00 \(\sigma = 13 \text{ TeV Internal} \)
 0.01 \(\sigma = 13 \text{ TeV Internal} \)
 0.02 \(\sigma = 13 \text{ TeV Internal} \)
 0.03 \(\sigma = 13 \text{ TeV Internal} \)
 0.04 \(\sigma = 13 \text{ TeV Internal} \)
 0.05 \(\sigma = 13 \text{ TeV Internal} \)
 0.06 \(\sigma = 13 \text{ TeV Internal} \)
 0.07 \(\sigma = 13 \text{ TeV Internal} \)
 0.08 \(\sigma = 13 \text{ TeV Internal} \)
 0.09 \(\sigma = 13 \text{ TeV Internal} \)
 0.001 \(\sigma = 13 \text{ TeV Internal} \)
 0.01 \(\sigma = 13 \text{ TeV Internal} \)
 0.02 \(\sigma = 13 \text{ TeV Internal} \)
 0.03 \(\sigma = 13 \text{ TeV Internal} \)
 0.04 \(\sigma = 13 \text{ TeV Internal} \)
 0.05 \(\sigma = 13 \text{ TeV Internal} \)
 0.07 \(\sigma = 13 \text{ TeV Internal} \)
 0.08 \(\sigma = 13 \text{ TeV Internal} \)
 0.09 \(\sigma = 13 \text{ TeV Internal} \)
 0.001 \(\sigma = 13 \text{ TeV Internal} \)
 0.01 \(\sigma = 13 \text{ TeV Internal} \)
 0.02 \(\sigma = 13 \text{ TeV Internal} \)
 0.03 \(\sigma = 13 \text{ TeV Internal} \)
 0.04 \(\sigma = 13 \text{ TeV Internal} \)
 0.05 \(\sigma = 13 \text{ TeV Internal} \)
 0.07 \(\sigma = 13 \text{ TeV Internal} \)
 0.08 \(\sigma = 13 \text{ TeV Internal} \)
 0.09 \(\sigma = 13 \text{ TeV Internal} \)
 0.01 \(\sigma = 13 \text{ TeV Internal} \)
 0.02 \(\sigma = 13 \text{ TeV Internal} \)
 0.03 \(\sigma = 13 \text{ TeV Internal} \)
 0.04 \(\sigma = 13 \text{ TeV Internal} \)
 0.05 \(\sigma = 13 \text{ TeV Internal} \)
 0.07 \(\sigma = 13 \text{ TeV Internal} \)
 0.08 \(\sigma = 13 \text{ TeV Internal} \)
 0.09 \(\sigma = 13 \text{ TeV Internal} \)
 0.01 \(\sigma = 13 \text{ TeV Internal} \)
 0.02 \(\sigma = 13 \tex

- Calculate physics motivated variables
- Calculate Likelihood
 - Formed from PDFs of electron variables
- Evaluate LH score compared to recommendations

- Calculate potential loss due to bremsstrahlung
- Consider cluster width variability and electronics gain
- Combine effects to get corrected electron energy

Thais _____

A New Way to Look at Electrons

- Most electron algorithms currently combine calculated variables
 - MVA techniques can exploit smaller differences in distributions
 - But potential for information loss is still present
- We could instead look at direct read-outs of the detector
 - One way to represent this information is images ...
 - Consider 'unrolling' the calorimeter and representing cells as pixels

Computer Vision

- Convolutional Neural Networks (CNNs) are a popular ML technique for processing images
 - 1. 'Read in' images as a matrix of pixels with numerical values
 - 2. Convolve the image with filters to create multiple high-level representations of the original image
 - 3. Use these representations as input to classification or other task

Thais and the state of the stat

Computer Vision

- Convolutional Neural Networks (CNNs) are a popular ML technique for processing images
 - 1. 'Read in' images as a matrix of pixels with numerical values
 - 2. Convolve the image with filters to create multiple high-level representations of the original image
 - 3. Use these representations as input to classification or other task
- Different filters learn different features/aspects of the image

Thais and the second of the

Initial architecture design utilizing all 4 layer images

Initial architecture design utilizing all 4 layer images

Initial architecture design utilizing all 4 layer images

Initial architecture design utilizing all 4 layer images

Initial architecture design utilizing all 4 layer images

Initial architecture design utilizing all 4 layer images

Initial architecture design utilizing all 4 layer images

IDENTIFICATION

- Input processed images to a fullyconnected NN
- Train NN for binary-classification: electrons=1 background=0
- Promising results with simple design and no tuning!

REGRESSION

- Input processed images to a fullyconnected NN
- Train NN to produce scale-factor to apply to reconstructed energy
- Not so great results....37% of ATLAS performance

Z

Thais and the second of the

On-going Work

- Consider other architectures:
 - Separate convolutions for each layer (no need to up-sample)
 - 3D convolution (allows network to learn relationship between layers)
- Optimize hyper-parameters and network design
- Explore options for including track information
 - Add variables to fully connected DNN
 - Create track images by projecting hits into 2-D plane
- Evaluate feasibility of training on data
 - o Purity is a concern for data samples, but accurate modeling is a concern for MC
 - Can also use GAN to create better simulations

Exciting results to come!

Thanks! Any questions?

Savannah Thais savannah.thais@yale.edu